FCCC LOGO Faculty Publications
Yu Y , Cheng Y , Fan JJ , Chen XS , Klein-Szanto A , Fitzgerald GA , Funk CD
Differential impact of prostaglandin H synthase 1 knockdown on platelets and parturition
Journal of Clinical Investigation. 2005 Apr;115(4) :986-995
Back to previous list
Platelet activation is a hallmark of severe preeclampsia, and platelet PGH synthase 1-derived (PGHS1-derived) thromboxane A(2) (TxA(2)) has been implicated in its pathogenesis. However, genetic disruption of PGHS 1 delays parturition. We created hypomorphic PGHS1 (PGHS1(Neo/Neo)) mice, in which the substantial but tissue-dependent variability in the inhibition of PGHS1-derived eicosanoids achieved by low-dose aspirin treatment is mimicked, to assess the relative impact of this strategy on hemostatic and reproductive function. Depression of platelet TxA(2) by 98% in PGHS1(Neo/Neo) mice decreased platelet aggregation and prevented thrombosis. Similarly, depression of macrophage PGE(2) by 75% was associated with selectively impaired inflammatory responses. PGF(2 alpha), at 8% WT levels was sufficient to induce coordinated temporal oxytocin receptor (OTR) expression in uterus and normal ovarian luteolysis in PGHS1(Neo/Neo). mice at late gestation, while absence of PGHS1 expressi on in null mice delayed OTR induction and the programmed decrease of serum progesterone during parturition. Thus, extensive but tissue-dependent variability in PG suppression, as occurs with low-dose aspirin treatment, prevents thrombosis and impairs the inflammatory response but sustains parturition. PGHS1(Neo/Neo) mice provide a model of low-dose aspirin therapy that elucidates how prevention or delay of preeclampsia might be achieved without compromising reproductive function.
English Article