FCCC LOGO Faculty Publications
Bao R , Selvakumaran M , Hamilton TC
Use of a surrogate marker (human secreted alkaline phosphatase) to monitor in vivo tumor growth and anticancer drug efficacy in ovarian cancer xenografts
Gynecol Oncol. 2000 Sep;78(3 Pt 1) :373-9
Back to previous list
OBJECTIVES: A limitation to preclinical evaluation of possible anticancer therapy is the objective assessment of efficacy, especially in the presence of small tumor burden or inaccessible disease. This study is designed to test whether human secreted alkaline phosphatase (SEAP) could be used as a soluble marker for in vivo tumor burden. METHODS: A SEAP expression construct under control of the CMV promoter was created. The SEAP activity in the conditioned medium was evaluated at 24 h and 48 h after the A2780 cell line was transiently transfected with the SEAP vector using Superfect reagent. Stable transfection of A2780 was accomplished by selection of transfectants in G418. SEAP activity of the stable transfectant was determined in conditioned medium and its relationship to tumor cell number was examined. A highly expressing stable transfectant was implanted into immunocompromised mice (2 x 10(6) subcutaneously and 5 x 10(6) intraperitoneally) and peripheral blood was obtained by orbital puncture every 5 days. The relationship between blood SEAP activity and tumor burden was studied. The usefulness of this marker in preclinical assessment of anticancer drug efficacy was evaluated by studying the plasma SEAP activity in xenografted mice treated or not treated with paclitaxel. RESULTS: After transient transfection of the A2780 cell line (5 x 10(5)) with the plasmid, SEAP activity was found in the medium at 24 h (482.0 +/- 2.0 ng/ml) and 48 h (1296.0 +/- 1.0 ng/ml). The in vitro study using a stable transfectant demonstrated that SEAP activity was linearly related to cell numbers (r = 0.99). The in vivo study demonstrated that SEAP was detectable in plasma one day postinjection, long before measurable tumor or detectable intraperitoneal tumor was present. Once detectable SC tumor was present, the SEAP activity correlated well with tumor volume (r = 0. 94-0.97). The plasma SEAP level was reduced after xenografted mice were treated with paclitaxel (20 mg/kg, weekly x5) compared with untreated mice in both SC and IP tumor models (P = 0.05, P = 0.025, respectively). CONCLUSION: These data suggest that the plasma SEAP activity can be used as an alternative to survival or tumor measurement in evaluating anticancer agents for efficacy, especially in the case of minimal or inaccessible disease.
20442203 0090-8258 Journal Article