FCCC LOGO Faculty Publications
Guttormsen AB , Ueland PM , Kruger WD , Kim CE , Ose L , Folling I , Refsum H
Disposition of homocysteine in subjects heterozygous for homocystinuria due to cystathionine beta-synthase deficiency: relationship between genotype and phenotype
Am J Med Genet. 2001 May 1;100(3) :204-13
Back to previous list
Abstract
We have investigated 31 subjects from five unrelated families with one or more members with cystathionine beta-synthase (CBS) deficiency. On the basis of their CBS genotype, the subjects were grouped as normal (n = 11) or heterozygotes (n = 20). Based on pyridoxine effect in the probands, the heterozygotes were further classified as pyridoxine-responsive (n = 9) or non-responsive (n = 11). Heterozygous subjects had normal fasting total plasma homocysteine (tHcy), but median urinary tHcy excretion rate was significantly elevated compared to healthy controls (0.39 micromol/h vs 0.24 micromol/h, P < 0.05). An abnormal tHcy response after methionine loading identified 73% of the pyridoxine non-responsive heterozygotes, but only 33% of the pyridoxine responsive participants. The increase in cystathionine or the change in tHcy relative to cystathionine did not improve diagnostic accuracy of the methionine loading test. After Hcy loading, the maximal increase in tHcy was significantly elevated, whereas t(1/2) was normal in heterozygotes. In conclusion, a single biochemical test cannot discriminate CBS heterozygotes from controls. Abnormal tHcy response after methionine loading was the most sensitive test. Our data suggest that the urinary tHcy excretion rate is a simple, non-invasive approach for studying mild disturbances in Hcy metabolism.
Notes
21240010 0148-7299 Journal Article