FCCC LOGO Faculty Publications
Huang J , Liu Y , Vitale S , Penning TM , Whitehead AS , Blair IA , Vachani A , Clapper ML , Muscat JE , Lazarus P , Scheet P , Moore JH , Chen Y
On meta- and mega-analyses for gene-environment interactions
Genet Epidemiol. 2017 Dec;41(8) :876-886
PMID: 29110346    PMCID: PMC5775907    URL: https://www.ncbi.nlm.nih.gov/pubmed/29110346
Back to previous list
Abstract
Gene-by-environment (G x E) interactions are important in explaining the missing heritability and understanding the causation of complex diseases, but a single, moderately sized study often has limited statistical power to detect such interactions. With the increasing need for integrating data and reporting results from multiple collaborative studies or sites, debate over choice between mega- versus meta-analysis continues. In principle, data from different sites can be integrated at the individual level into a "mega" data set, which can be fit by a joint "mega-analysis." Alternatively, analyses can be done at each site, and results across sites can be combined through a "meta-analysis" procedure without integrating individual level data across sites. Although mega-analysis has been advocated in several recent initiatives, meta-analysis has the advantages of simplicity and feasibility, and has recently led to several important findings in identifying main genetic effects. In this paper, we conducted empirical and simulation studies, using data from a G x E study of lung cancer, to compare the mega- and meta-analyses in four commonly used G x E analyses under the scenario that the number of studies is small and sample sizes of individual studies are relatively large. We compared the two data integration approaches in the context of fixed effect models and random effects models separately. Our investigations provide valuable insights in understanding the differences between mega- and meta-analyses in practice of combining small number of studies in identifying G x E interactions.
Notes
1098-2272 Huang, Jing ORCID: http://orcid.org/0000-0002-6133-6988 Liu, Yulun Vitale, Steve Penning, Trevor M Whitehead, Alexander S Blair, Ian A Vachani, Anil Clapper, Margie L Muscat, Joshua E Lazarus, Philip Scheet, Paul Moore, Jason H Chen, Yong Journal Article United States Genet Epidemiol. 2017 Dec;41(8):876-886. doi: 10.1002/gepi.22085. Epub 2017 Nov 7.