FCCC LOGO Faculty Publications
DNA double-strand breaks with 5 ' adducts are efficiently channeled to the DNA2-mediated resection pathway
Nucleic Acids Research. 2016 Jan;44(1) :221-231
PMID: WOS:000371264000026    PMCID: PMC4705695   
Back to previous list
Abstract
DNA double-strand breaks (DSBs) with 5' adducts are frequently formed from many nucleic acid processing enzymes, in particular DNA topoisomerase 2 (TOP2). The key intermediate of TOP2 catalysis is the covalent complex (TOP2cc), consisting of two TOP2 subunits covalently linked to the 5' ends of the nicked DNA. In cells, TOP2ccs can be trapped by cancer drugs such as etoposide and then converted into DNA double-strand breaks (DSBs) that carry adducts at the 5' end. The repair of such DSBs is critical to the survival of cells, but the underlying mechanism is still not well understood. We found that etoposide-induced DSBs are efficiently resected into 3' single-stranded DNA in cells and the major nuclease for resection is the DNA2 protein. DNA substrates carryingmodel 5' adducts were efficiently resected in Xenopus egg extracts and immunodepletion of Xeno-pus DNA2 also strongly inhibited resection. These results suggest that DNA2-mediated resection is a major mechanism for the repair of DSBs with 5' adducts.
Notes
Tammaro, Margaret Liao, Shuren Beeharry, Neil Yan, Hong