FCCC LOGO Faculty Publications
Tang B , Kadariya Y , Chen Y , Slifker M , Kruger WD
Expression of MTAP inhibits tumor-related phenotypes in HT1080 cells via a mechanism unrelated to its enzymatic function
G3 (Bethesda). 2014 Jan;5(1) :35-44
Back to previous list
Methylthioadenosine Phosphorylase (MTAP) is a tumor suppressor gene that is frequently deleted in human cancers and encodes an enzyme responsible for the catabolism of the polyamine byproduct 5'deoxy-5'-methylthioadenosine (MTA). To elucidate the mechanism by which MTAP inhibits tumor formation, we have reintroduced MTAP into MTAP-deleted HT1080 fibrosarcoma cells. Expression of MTAP resulted in a variety of phenotypes, including decreased colony formation in soft-agar, decreased migration, decreased in vitro invasion, increased matrix metalloproteinase production, and reduced ability to form tumors in severe combined immunodeficiency mice. Microarray analysis showed that MTAP affected the expression of genes involved in a variety of processes, including cell adhesion, extracellular matrix interaction, and cell signaling. Treatment of MTAP-expressing cells with a potent inhibitor of MTAP's enzymatic activity (MT-DADMe-ImmA) did not result in a MTAP- phenotype. This finding suggests that MTAP's tumor suppressor function is not the same as its known enzymatic function. To confirm this, we introduced a catalytically inactive version of MTAP, D220A, into HT1080 cells and found that this mutant was fully capable of reversing the soft agar colony formation, migration, and matrix metalloproteinase phenotypes. Our results show that MTAP affects cellular phenotypes in HT1080 cells in a manner that is independent of its known enzymatic activity.
Tang, Baiqing Kadariya, Yuwaraj Chen, Yibai Slifker, Michael Kruger, Warren D eng CA06927/CA/NCI NIH HHS/ CA131024/CA/NCI NIH HHS/ P30 CA006927/CA/NCI NIH HHS/ Research Support, N.I.H., Extramural 2014/11/13 06:00 G3 (Bethesda). 2014 Nov 11;5(1):35-44. doi: 10.1534/g3.114.014555.