FCCC LOGO Faculty Publications
Chroni A , Vu T , Miura S , Kumar S
Delineation of Tumor Migration Paths by Using a Bayesian Biogeographic Approach
Cancers (Basel). 2019 Nov 27;11(12)
PMID: 31783570    PMCID: PMC6966534    URL: https://www.ncbi.nlm.nih.gov/pubmed/31783570
Back to previous list
Understanding tumor progression and metastatic potential are important in cancer biology. Metastasis is the migration and colonization of clones in secondary tissues. Here, we posit that clone migration events between tumors resemble the dispersal of individuals between distinct geographic regions. This similarity makes Bayesian biogeographic analysis suitable for inferring cancer cell migration paths. We evaluated the accuracy of a Bayesian biogeography method (BBM) in inferring metastatic patterns and compared it with the accuracy of a parsimony-based approach (metastatic and clonal history integrative analysis, MACHINA) that has been specifically developed to infer clone migration patterns among tumors. We used computer-simulated datasets in which simple to complex migration patterns were modeled. BBM and MACHINA were effective in reliably reconstructing simple migration patterns from primary tumors to metastases. However, both of them exhibited a limited ability to accurately infer complex migration paths that involve the migration of clones from one metastatic tumor to another and from metastasis to the primary tumor. Therefore, advanced computational methods are still needed for the biologically realistic tracing of migration paths and to assess the relative preponderance of different types of seeding and reseeding events during cancer progression in patients.
Chroni, Antonia Orcid: 0000-0003-3655-8252 Vu, Tracy Miura, Sayaka Orcid: 0000-0001-9881-2848 Kumar, Sudhir LM012758/Temple University LM012487/Foundation for the National Institutes of Health Journal Article Switzerland Cancers (Basel). 2019 Nov 27;11(12). pii: cancers11121880. doi: 10.3390/cancers11121880.