Lattice_grid_med
Powered by LatticeGrid

Search Enter term and hit return. Use '*' for as a wildcard.
Lawrence SH, Ramirez UD, Selwood T, Stith L, Jaffe EK
Allosteric inhibition of human porphobilinogen synthase
J Biol Chem (2009) 284:35807-17.
Abstract
Porphobilinogen synthase (PBGS) catalyzes the first common step in tetrapyrrole (e.g. heme, chlorophyll) biosynthesis. Human PBGS exists as an equilibrium of high activity octamers, low activity hexamers, and alternate dimer configurations that dictate the stoichiometry and architecture of further assembly. It is posited that small molecules can be found that inhibit human PBGS activity by stabilizing the hexamer. Such molecules, if present in the environment, could potentiate disease states associated with reduced PBGS activity, such as lead poisoning and ALAD porphyria, the latter of which is associated with human PBGS variants whose quaternary structure equilibrium is shifted toward the hexamer (Jaffe, E. K., and Stith, L. (2007) Am. J. Hum. Genet. 80, 329-337). Hexamer-stabilizing inhibitors of human PBGS were identified using in silico prescreening (docking) of approximately 111,000 structures to a hexamer-specific surface cavity of a human PBGS crystal structure. Seventy-seven compounds were evaluated in vitro; three provided 90-100% conversion of octamer to hexamer in a native PAGE mobility shift assay. Based on chemical purity, two (ML-3A9 and ML-3H2) were subjected to further evaluation of their effect on the quaternary structure equilibrium and enzymatic activity. Naturally occurring ALAD porphyria-associated human PBGS variants are shown to have an increased susceptibility to inhibition by both ML-3A9 and ML-3H2. ML-3H2 is a structural analog of amebicidal drugs, which have porphyria-like side effects. Data support the hypothesis that human PBGS hexamer stabilization may explain these side effects. The current work identifies allosteric ligands of human PBGS and, thus, identifies human PBGS as a medically relevant allosteric enzyme.
Note
Publication Date: 2009-12-18.
PMCID: 2791010
Back
Last updated on Thursday, November 02, 2017