Lattice_grid_med
Powered by LatticeGrid

Search Enter term and hit return. Use '*' for as a wildcard.
Sawyer TW, Koevary JW, Howard CC, Austin OJ, Rice PF, Hutchens GV, Chambers SK, Connolly DC, Barton JK
Fluorescence and Multiphoton Imaging for Tissue Characterization of a Model of Postmenopausal Ovarian Cancer
Lasers Surg Med (2020) In process.
Abstract
BACKGROUND AND OBJECTIVES: To determine the efficacy of targeted fluorescent biomarkers and multiphoton imaging to characterize early changes in ovarian tissue with the onset of cancer. STUDY DESIGN/MATERIALS AND METHODS: A transgenic TgMISIIR-TAg mouse was used as an animal model for ovarian cancer. Mice were injected with fluorescent dyes to bind to the folate receptor alpha, matrix metalloproteinases, and integrins. Half of the mice were treated with 4-vinylcyclohexene diepoxide (VCD) to simulate menopause. Widefield fluorescence imaging (WFI) and multiphoton imaging of the ovaries and oviducts were conducted at 4 and 8 weeks of age. The fluorescence signal magnitude was quantified, and texture features were derived from multiphoton imaging. Linear discriminant analysis was then used to classify mouse groups. RESULTS: Imaging features from both fluorescence imaging and multiphoton imaging show significant changes (P < 0.01) with age, VCD treatment, and genotype. The classification model is able to classify different groups to accuracies of 75.53%, 69.53%, and 86.76%, for age, VCD treatment, and genotype, respectively. Building a classification model using features from multiple modalities shows marked improvement over individual modalities. CONCLUSIONS: This study demonstrates that using WFI with targeted biomarkers, and multiphoton imaging with endogenous contrast shows promise for detecting early changes in ovarian tissue with the onset of cancer. The results indicate that multimodal imaging can provide higher sensitivity for classifying tissue types than using single modalities alone. Lasers Surg. Med. (c) 2020 Wiley Periodicals, Inc.
Note
Publication Date: 2020-04-20.
Back
Last updated on Thursday, June 04, 2020