Lattice_grid_med
Powered by LatticeGrid

Search Enter term and hit return. Use '*' for as a wildcard.
Campitelli P, Modi T, Kumar S, Ozkan SB
The Role of Conformational Dynamics and Allostery in Modulating Protein Evolution
Annu Rev Biophys (2020) In process.
Abstract
Advances in sequencing techniques and statistical methods have made it possible not only to predict sequences of ancestral proteins but also to identify thousands of mutations in the human exome, some of which are disease associated. These developments have motivated numerous theories and raised many questions regarding the fundamental principles behind protein evolution, which have been traditionally investigated horizontally using the tip of the phylogenetic tree through comparative studies of extant proteins within a family. In this article, we review a vertical comparison of the modern and resurrected ancestral proteins. We focus mainly on the dynamical properties responsible for a protein's ability to adapt new functions in response to environmental changes. Using the Dynamic Flexibility Index and the Dynamic Coupling Index to quantify the relative flexibility and dynamic coupling at a site-specific, single-amino-acid level, we provide evidence that the migration of hinges, which are often functionally critical rigid sites, is a mechanism through which proteins can rapidly evolve. Additionally, we show that disease-associated mutations in proteins often result in flexibility changes even at positions distal from mutational sites, particularly in the modulation of active site dynamics. Expected final online publication date for the Annual Review of Biophysics, Volume 49 is May 6, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
MeSH terms
Note
Publication Date: 2020-02-19.
Back
Last updated on Saturday, August 22, 2020